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Initialize

‡ Spell check off

In[2]:= Off@General::spell1D;

In[3]:= SetOptions@ArrayPlot, ColorFunction Ø "GrayTones", DataReversed Ø True,
Frame Ø False, AspectRatio Ø Automatic, Mesh Ø False,
PixelConstrained Ø True, ImageSize Ø SmallD;

SetOptions@ListPlot, ImageSize Ø SmallD;
SetOptions@Plot, ImageSize Ø SmallD;
SetOptions@DensityPlot, ImageSize Ø Small, ColorFunction Ø GrayLevelD;
nbinfo = NotebookInformation@EvaluationNotebook@DD;
dir =

H"FileName" ê. nbinfo ê. FrontEnd`FileName@d_List, nam_, ___D ß

ToFileName@dDL;

Outline

Last time

‡ Local measurements

Representing motion, Orientation in space-time

Fourier representation and sampling

Optic flow, the gradient constraint, aperture problem

Neural systems solutions to the problem of motion measurement.

Space-time oriented receptive fields

‡ Global integration



‡

Global integration

Sketched a  Bayesian formulation--the integrating uncertain local measurements with the right priors can be used to model 
a variety of human motion results. 

Today
Later, we'll pick up on motion again--namely structure from motion in the context of determining layout and computing 
heading

Today, surface material:

Surface properties,  color, transparency, etc..

Reflectance & lightness constancy

Transparency

Cooperative computation

Introduction to material perception

Material & Texture modeling
General categories of the "stuff" we see: surfaces (opaque and transparent), particle clouds (e.g. smoke, mist,..), liquids, 
hair, fur,...

Connection with count vs. mass nouns.

Reseearch in computer graphics has provided major progress in the characterization of real surfaces, but realism is still a 
challenge.

Uniform materials
Surfaces with material properties or attributes:

reflectance ("paint" or pigment or albedo)

matte and shiny

mirrors

transparency

multiplicative, additive

‡ Physics-based generative modeling: Bidirectional reflectance distribution functions
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‡

Physics-based generative modeling: Bidirectional reflectance distribution functions

Figure from: Image-Based BRDF Measurement Including Human Skin Stephen R. Marschner* Stephen H. Westin Eric P. 
F. Lafortune, Kenneth E. Torrance Donald P. Greenberg

The Bidirectional Reflectance Distribution Function (BRDF) describes direc-
tional dependence of the reflected light energy. The BRDF represents, for 
each incoming angle, the amount of light that is scattered in each outgoing 
angle. 
For a given wavelength, it is the ratio of the reflected radiance in a particular 
direction to the incident irradiance:

r(qi,fi,qe,fe)= dLeH,qe,feLdEiHqi,fiL
where E is the irradiance, that is the incident flux per unit area (w-m-2), and 
L is the reflected radiance, or the reflected flux per unit area per unit solid 
angle (w-m-2-sr-1). The units of BRDF are  inverse steradians. Respects the 
physics: Reciprocity, energy conservation.
We've assumed  isotropy, i.e. the BRDF is the same for all directions at a 
point, and spatially uniform material. 
For a Lambertian (perfectly diffuse) surface, for example, the BRDF is con-
stant. The Phong model described earlier in the context of shape-from-shad-
ing can approximate only a subset of surfaces characterized by BRDFs.
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where E is the irradiance, that is the incident flux per unit area (w-m-2), and 
L is the reflected radiance, or the reflected flux per unit area per unit solid 
angle (w-m-2-sr-1). The units of BRDF are  inverse steradians. Respects the 
physics: Reciprocity, energy conservation.
We've assumed  isotropy, i.e. the BRDF is the same for all directions at a 
point, and spatially uniform material. 
For a Lambertian (perfectly diffuse) surface, for example, the BRDF is con-
stant. The Phong model described earlier in the context of shape-from-shad-
ing can approximate only a subset of surfaces characterized by BRDFs.

Figure from: http://graphics.stanford.EDU/~smr/brdf/bv/

‡ Ward reflection model:  For calculating an image from a description of the shape, the illumination, 

and the BRDF

The Ward model is a physically realizable cousin of the Phong model.

Subscripts i and e below indicate incoming and outgoing rays, respectively.

Le(qe,fe)=Ÿ Ÿ Li(qi,fi)r(qi,fi,qe,fe)cosqisinfi
dqidfi

r(qi,fi,qe,fe)= rd
p +rs

e-tan2HdLëa2

4 pa2 cosqi cosqe
d is the angle between the viewer and the vector defining the mirror reflection of the incident ray (i.e. where the angle of 

reflection equals the angle of incidence). a can be thought of is a measure of "roughness", and rd  and rs give the 

amounts of diffuse and reflected contributions.
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d is the angle between the viewer and the vector defining the mirror reflection of the incident ray (i.e. where the angle of 

reflection equals the angle of incidence). a can be thought of is a measure of "roughness", and rd  and rs give the 

amounts of diffuse and reflected contributions.

‡ Other links

http://www.cs.princeton.edu/~smr/cs348c-97/surveypaper.html

http://www.nps.navy.mil/cs/sullivan/MV4470/resources/BRDFIntro.pdf

http://www.ciks.nist.gov/appmain.htm

http://www.graphics.cornell.edu/research/measure/

For examples using BRDF measurements of human skin see:

http://www.graphics.cornell.edu/online/measurements/

Textured materials
Note: "texture" sometimes refers to low-level cues or statistics useful for inferring properties like slant and shape, but it is 
also used to refer to surface material properties that are useful to estimate because they represent view-invariant object 
properties. In other words, sometimes it refers to a cue (measurement to support an estimate) and other times to an esti-
mate itself. Thus confusingly, sometimes "texture" refers to an image features, and other times to 3D surface properties.

In this lecture, we focus on texture as a material property.

Textures can:

be regular ("herringbone pattern") or stochastic ("fur")

"cohere" e.g. asphalt vs. sand & gravel

Textures can be due to:

reflectance/pigment variations or bump (small geometric) variations

perceptually it isn't always easy to tell the difference, and may not matter depending on visual 
function.

For example, consider the visual and tactile differences between real wood and synthetic wood 
finishes.

(Note that image texture can also result from a completely uniform (shiny) material reflecting a 
textured environment)
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Textures can:

be regular ("herringbone pattern") or stochastic ("fur")

"cohere" e.g. asphalt vs. sand & gravel

Textures can be due to:

reflectance/pigment variations or bump (small geometric) variations

perceptually it isn't always easy to tell the difference, and may not matter depending on visual 
function.

For example, consider the visual and tactile differences between real wood and synthetic wood 
finishes.

(Note that image texture can also result from a completely uniform (shiny) material reflecting a 
textured environment)

Key characteristics of texture: 

spatial variations are small with respect to the global scale of the surface structure

spatial homogeneity

‡ Appearance-based measurements

How can one characterize the generative model? Much more complicated because of small-, but not micro-scale surface 
non-uniformity.

http://www1.cs.columbia.edu/CAVE/projects/btf/

‡ Random synthesis and learning of stochastic textures...

Next lecture. See Heeger and Bergen in Supplementary material, Zhu et al., 
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Reflectance estimation & lightness

Introduction
The trichromacy theory of human color vision (Young, Maxwell, Helmholtz in the 19th century) states that three sensor 
types  could explain the data on color matching has been highly successful. However, it can not explain some phenomena. 
Simultaneous and successive color contrast effects required an elaboration of trichromacy to opponent-color coding.

What about color constancy?   Color constancy refers to the observation that the color (of an object) can remain 
relatively unchanged with both spatial and chromatic changes in illumination.  Historically, much experiment and thought 
went into accounting for the phenomena of color appearance over the last century and a half.  However, the problem of 
what color vision is for, received less attention. 

Although people have made various conjectures about the function of color vision, the advent of computational 
vision helped to clarify and motivate research into color’s function.  One idea is that it could aid in segmentation--the 
localization of boundaries in the absence of luminance contours. Another idea is that color could provide a surface 
attribute, relatively invariant over illumination variations useful for recognition. So just like shape is informative for object 
recognition, so might surface color. This second explanation gives us a different slant on color constancy--because in order 
to have a reliable surface attribute, we must be able to compute it given variations in secondary variables.  Surface color is 
not given to the eye directly because the color and spatial distribution of the illumination typically varies.  If we computed 
the color of an object by simply registering its wavelength composition, the object would rarely appear the same as it was 
moved about the room, or from indoors to outdoors. To obtain some measure of color constancy, vision discounts illumina-
tion as a secondary variable. The neural mechanisms of color vision support the estimation of invariant intrinsic surface 
properties that are in some sense closer to the parameters of the BRDF than to the physical light input to the eye.

If color constancy is a result of the neural system's attempt to estimate a surface attribute, then what is that 
attribute, and how do we estimate it? Let's first look at simplified versions of the problem--in particular, lightness 
constancy.

Functional vs. mechanistic explanations

‡ Overview of lightness effects

Recall the Land & McCann "Two squares and a happening", and the two-cylinders version of it.

http://web.mit.edu/persci/demos/Lightness/gaz-teaching/index.html
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‡ Simultaneous contrast

http://web.mit.edu/persci/demos/Lightness/gaz-teaching/flash/contrast-movie.swf

Lightness & spatially uniform illumination

‡ Simple constancy: simultaneous contrast mechanisms vs. functional algorithms

Local contrast

Spatially uniform illumination. L = RE.

The simple generative model, together with a task assumption that assumes vision values an invariant object 
property,

 suggests that R should be a better predictor of lightness than L. 

Lightness ->R, where R is between 0 and 1.

Let  L1 and  L2 be the luminance of the small center disks, and R1 and  R2 be their reflectances.

Relative reflectance and local contrast: L1/L2 = (R1E)/(R2E) = R1/R2

So perceived ratios of lightness should match luminance ratios. What about the sense that

lightness as a particular absolute value, e.g. "white", "black", "medium gray"?

Normalization or anchoring problem (see Gilchrist).

Estimate of R1 ~ L1/Lavg

or R1 ~ L1/Lmax ?

There is a physical constraint on reflectance. In the natural world a typical range is about 10 to 1, 

or with really white and really black surfaces up to 30 to 1.

Role of contrast and adaptation mechanisms--See Kraft and Brainard (1999).

See Appendix for a simple Bayesian model of reflectance estimation.
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Spatially uniform illumination. L = RE.

The simple generative model, together with a task assumption that assumes vision values an invariant object 
property,

 suggests that R should be a better predictor of lightness than L. 

Lightness ->R, where R is between 0 and 1.

Let  L1 and  L2 be the luminance of the small center disks, and R1 and  R2 be their reflectances.

Relative reflectance and local contrast: L1/L2 = (R1E)/(R2E) = R1/R2

So perceived ratios of lightness should match luminance ratios. What about the sense that

lightness as a particular absolute value, e.g. "white", "black", "medium gray"?

Normalization or anchoring problem (see Gilchrist).

Estimate of R1 ~ L1/Lavg

or R1 ~ L1/Lmax ?

There is a physical constraint on reflectance. In the natural world a typical range is about 10 to 1, 

or with really white and really black surfaces up to 30 to 1.

Role of contrast and adaptation mechanisms--See Kraft and Brainard (1999).

See Appendix for a simple Bayesian model of reflectance estimation.

Spatially varying illumination

‡ Recall Land & McCann's "Two squares and a happening" (Lecture 13)

The left half looks lighter than the right half.

0 50100150200250
0

50
100
150
200
250

 But the intensity across a horizontal line tells a different story:

50 100 150 200 250

0.3
0.4
0.5
0.6
0.7
0.8

The two ramps are identical. One can apply the above rule that the luminance ratio at edges provides a good estimate of 
the reflectance ratio at edges to build a lightness algorithm (See Appendix). Algorithms can be applied to other related 
stimuli such as the O'Brien Cornsweet effect.
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‡ Craik-O'Brien-Cornsweet effects

In[8]:= size = 256; y@x_D :=
1.`

AbsB x

2
F + 6

; yl = TableBy@xD, :x, 0,
size

2
- 1>F;

yl2 = Join@-Reverse@ylD, yl - 0.03D;
ListPlot@yl2 + 0.5, PlotRange Ø 8-1, 1<, Joined Ø TrueD

Out[8]=
50 100 150 200 250

-1.0

-0.5

0.5

1.0

In[9]:= picture = Table@Table@yl2PiT, 8i, 1, size<D, 8i, 1, size<D;
picture2 = Table@Table@-Hyl2PiTL, 8i, 1, size<D, 8i, 1, size<D;
gp1 = ArrayPlot@picture, Frame Ø False, Mesh Ø False, PlotRange Ø 8-1, 1<,

AspectRatio Ø AutomaticD
gp2 = ArrayPlot@picture2, Frame Ø False, Mesh Ø False, PlotRange Ø 8-1, 1<,

AspectRatio Ø AutomaticD;

Out[10]=

Lightness algorithms in "flat land"
The Appendix provides some examples of historical approaches to computing lightness. Lecture 13 also had an example 
of an algorithm.

Visual cortex: Respond to luminance or lightness change?
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Visual cortex: Respond to luminance or lightness change?
If we could measure the activity in the first cortical area, V1, would responses there correspond to intensity change or 
lightness change?

Using functional magnetic resonance imaging, we can image V1 activity in subjects viewing a contrast-reversing Craik-
O'Brien illusion. The result is that V1 responds to lightness contrast with almost the same strength as to an equivalent 
luminance change.

See supplementary pdf notes on course web page. Boyaci, H., Fang, F., Murray, S. O., & Kersten, D. (2007). Responses to 
lightness variations in early human visual cortex. Curr Biol, 17(11), 989-993. (pdf) and 

Boyaci, H., Fang, F., Murray, S. O., & Kersten, D. (2010). Perceptual grouping-dependent lightness processing in human 
early visual cortex. Journal of Vision, 10(9). http://jwww.journalofvision.org/content/10/9/4.full

The animation below shows  what contrast-reversing lightness illusion looks like:

In[14]:= ListAnimate@8gp1, gp2, gp1, gp2<, 1, AnimationRunning Ø FalseD

Out[14]=

Reflectance estimation & indirect lighting
How sophisticated is our perceptual system to the causes of illumination? Does the visual system take into account the 
geometry of reflected light? Consider indirect lighting such as would arise in a corner. Below is a photograph of a corner 
consisting of a white paper on the left and a red paper on the right. The white paper looks pinkish (consistent with the 
physical spectrum induced by the light landing on it from the red paper). Normally we don't notice the color of reflected 
light, perhaps because given sufficient cues to shape, it can discount the color of indirect lighting. How can we test this?
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http://gandalf.psych.umn.edu/~kersten/kersten-lab/Mutual_illumination/BlojKerstenHurlbertDemo99.pdf (See Bloj MG, 
Kersten D, Hurlbert AC (1999))

Imagine making the following card using a color printer:

Fold it, arrange the lighting as show below, and  then look at it from above. The physics  of the situation is illustrated 
below.

Now if you look at the paper steadily, you would experience a spontaneous reversal in the shape going from a concave 
corner to a convex "roof". When the paper looks like a roof, the white side appears more pinkish than when the paper 
appears to be a concave. Why is this so?
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‡ Two generative models

Bloj et al. measured the perceptual effect and produced a quantitative explanation showing that the visual system seemed 
to have

"built-in" knowledge about the effects of indirect vs. direct lighting. They used the following generative models to produce 
a Bayesian estimate of surface color matches:

Indirect plus direct lighting (1 bounce, Funt & Drew, 1991)

Direct lighting only (0 bounce)

Bottom line: Human color matches consistent with built-in knowledge of the generative laws of 
reflection.
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Perception of shiny materials

From: Fleming RW, Dror RO, Adelson EH (2003) Real-world illumination and the perception of surface 
reflectance properties. J Vis 3:347-368.

A major invariance problem. One of the main results of this study was to show that human judgments of specular 
attributes increases in accuracy when a shiny object is placed  in a complex but still naturalistic environment. What is 
"naturalistic"? One ingredient is that the images have the kurtotic histogram properties that we studied in an earlier lecture. 
This is consistent with the presence of edges being important. Bright points are important too.  Recognizable reflected 
objects are not necessary. Fleming et al used the above Ward model and had human subjects estimate qualities related to 
the degree of specularity (the image of a point light source on a really shiny object is quite sharp, i.e. a point), and the 
relative amounts of specular to diffuse components. See  a and rs in the Ward model above.

http://journalofvision.org/3/5/3/article.aspx
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Shiny or matte?

http://gandalf.psych.umn.edu/~kersten/kersten-lab/demos/MatteOrShiny.html

See: Doerschner K, Kersten D, & Schrater P. (2009) Rapid Classification of Surface Reflectance from Image Velocities. 
Computer Analysis of Images and Patterns, Lecture Notes in Computer Science, Springer Berlin / Heidelberg, volume 
5702, pp. 856-864.

They analyzed the optic flow patterns produced by shiny vs. matte objects. Specularities tend to "stick" to points of high 
curvature. Objects that have a range of curvatures might be expected to show pecularities in the histograms of speed 
components extracted from the optic flow. Doerschner et al. showed that the histograms of curvy shiny objects tend to be 
more bimodal than for matte objects.

Appendices

‡ Simple constancy: Bayesian reflectance estimation of one isolated patch in flatland

This simple example shows how marginalization or integrating out secondary variables can constrain an otherwise uncon-
strained problem...even without hypothesizing explicit priors on reflectance or illumination distributions. (Freeman, 1994)

L = R*El + noise. Given L, what is R? El is the secondary variable that we want to discount by marginalization.

Let the illumination range be [0,10], and the reflectance range [0,1]. Then the luminance range is also [0,10]. 

Let the luminance noise be Gaussian with a standard deviation less than 10% of L, say 1 for simplicity. Then the probabil-
ity of an observation L given R and El is proportional to:
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L = R*El + noise. Given L, what is R? El is the secondary variable that we want to discount by marginalization.

Let the illumination range be [0,10], and the reflectance range [0,1]. Then the luminance range is also [0,10]. 

Let the luminance noise be Gaussian with a standard deviation less than 10% of L, say 1 for simplicity. Then the probabil-
ity of an observation L given R and El is proportional to:

likeli[L_,R_,El_]:=Exp[-(.5)*(L-R*El)^2]/Sqrt[2. Pi];

prior@R_D := PDF@UniformDistribution@80, 1<D, RD

where we assume that the noise has a Gaussian distribution. 

Here is a plot of the likelihood for a luminance value of 1:

Plot3D@prior@RD * likeli@1, R, E1D, 8R, 0.1, 0.9<, 8E1, 0.1, 10<,
AxesLabel Ø 8"R", "E", "p"<D
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DensityPlot@likeli@1, R, E1D, 8R, 0.1, 0.9<, 8E1, 0.1, 10<D

Marginalize over illumination, El to get the likelihood of  R for a given value of L:

pr[L_,R_]:= Evaluate[Integrate[prior[R]*Exp[-(L-R*El)^2],{El,0,10}]]
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Plot3D@pr@L, RD, 8L, 0, 10<, 8R, 0.0, 1<, AxesLabel Ø 8"R", "L", "p"<,
PlotRange Ø 80, 10<D

Here is the relative probability of R given L = 0.75

pt = 88r0 = R ê. NMinimize@-pr@.75, RD, R D@@2DD, 0<, 8r0, 10<<;
Plot@pr@0.75, RD, 8R, 0, 1<, PlotRange Ø 80, 10<,
Epilog Ø 8Red, Thick, Line@ptD<D

0.0 0.2 0.4 0.6 0.8 1.0

2

4

6

8

10
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LvsR = Table@8L, R ê. NMinimize@-pr@L, RD, RD@@2DD<, 8L, .01, 10, .1<D;
ListPlot@LvsR D

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

Some notes on color illusions

‡ Munker-White illusion

http://web.mit.edu/persci/people/bart/DemoLinks.html

White M (1981) The effect of the nature of the surround on the perceived lightness  of 
graybars within square-wave test gratings.  Perception 10:215|230.
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‡ Neon color spreading,  etc.

From: http://neuro.caltech.edu/~carol/VanTuijl.html

http://www.cogsci.uci.edu/%7Eddhoff/illusions.html

Hoffman DD (1998) Visual Intelligence. New York: W. W. Norton & Company.

http://www.michaelbach.de/ot/col_neon/

‡ Land, Horn and others

Given L(x,y)=S(x,y)E(x,y), where L is the intensity/luminace data of the image (using an  achromatic world), we attempt to 
estimate S(x,y).  

Rather than seeking a spatial filter explanation (e.g. do edge detection, and then fill in the region up to the edges with the 
color of the edges), consider the following functional explanation of this illusion:

The lightness value we assign is correlated with S, not with L.  So how can we estimate S?

The idea is to assume that the image intensity changes (or changes in r, b, or g) are due to slowly varying illumination 
together with piece-wise constant reflectances.  The slowly varying illumination needs to be filtered out.  Land's scheme 
was to use ratios:
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We want to estimate

But we would like to discount small changes in L, so we can use the rule:

and thus by using luminance ratios that are sufficiently large in the product, we obtain an estimate of the relative 
reflectance

where the luminance ratio is measureable. We can obtain estimates for i = 1,2,3,4, 6. (See Appendix to see how Land 
extended this lightness algorithm model to color).

‡ Horn's algorithm

Luminance (L) = reflectance (S) x illumination (E)

1) Take logs to turn the multiplication into addition:
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2) High-pass filter to amplify the edges

3) Threshold all  values below some finite threshold

Using Poisson's equation, solve for S'(x,y). 

The mathematical complication is because the problem is two-dimensional.  In one dimension, only beginning calculus is 
required to understand how to solve a simple differential equation--just integrate.  

Both Horn's method and Land's have some problems:

1) Normalization (anchoring problem) is actually more complicated, because we have taken second derivatives, leaving an 
extra degree of freedom in the integration process.

2)Spatial scale and threshold

3) restricted to flatland.

In fact most of the alternatives face the same problems.  One could imagine various ways of filtering out the illumination, 
for example, using spatial frequency representations of the image..but this does not help.

‡ Mathematica demonstration of a 1D lightness calculation in flatland

One explanation is that the visual system takes a spatial derivative of the intensity profile. Recall from calculus that the  
second derivative of a linear function is zero. So a second derivative should filter out the slowly changing linear ramp in 
the illusory image. We approximate the second derivative with a discrete kernel (-1,2,-1). Let's apply this to a line across 
the Craik-O'Brien illusion above.

The steps are: 1) take the second derivative of the image; 

filter = 81, -2, 1<;
H*Take the second derivative at each location*L
fspicture = ListConvolve@filter, picture@@128DDD;

2) threshold. To handle gradients that aren't perfectly linear, we add a threshold function to set small values to zero before 
re-integrating:

threshold@x_, t_D := If@Abs@xD > t, x, 0D;
SetAttributes@threshold, ListableD;
fspicture = threshold@fspicture, 0.0025D;

3) re-integrate
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3) re-integrate

ListPlot@fspicture, Joined Ø True, PlotRange Ø 8-0.1`, 0.1`<D;
integratefspicture = FoldList@Plus, fspictureP1T, fspictureD;
integratefspicture2 = FoldList@Plus, integratefspictureP1T,

integratefspictureD;
ListPlot@integratefspicture2, Joined Ø True, Axes Ø FalseD

Color constancy
Land's demonstrations

Beginning in the 1950's, Edwin Land has shown the sophistication of human color constancy in a number of 
striking demonstrations (Land, E.H., 1983). In one experiment, three lights (long, medium, and short wave lamps) illumi-
nate a Mondrian consisting of a collection of patches of paper of various colors.

L (r)

M (g)

S (b)

interference filters
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W
Y

We consider two phases, each characterized by a different global illumination of the whole Mondrian.  In the first phase, 
we pick out two patches, a white (W) and a yellow (Y) one, on which to focus our attention.  A radiometer is used to 
measure the amount of each of the three components radiating off the yellow patch.  Now, in the second phase, we adjust 
the irradiance of each of the colored lights so that we get the same readings for the white patch as we had for the yellow 
patch in the first phase.  And as a consequence, the spectral composition of the yellow patch changes too, because it is now 
receiving the same changed illumination as the white patch.  Based on spectral composition, we might predict that the 
white patch of the first phase would be made to appear yellow in the second phase.  but it doesn't.  color constancy is 
maintained, and the white patch appears white, and the yellow appears yellow.  How can this be done?

Kraft and Brainard (1999) have measured color constancy under nearly natural viewing conditions.  Their results rule out 
all three classic hypotheses: local adaptation, by adaptation to the spatial mean of the image, or by adaptation to the most 
intense image region. What more is needed to explain to constancy beyond these simple visual mechanisms?
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